tensile strength of steel

Tensile Strength of Steel

Spread the love

Last Updated on May 4, 2021

 Tensile strength of steel is defined as the resistance of steel to breaking under tensile stress. It’s used to define the transition from elastic deformation to plastic deformation in steel. It’s usually expressed in force units per cross-sectional area. A piece of steel will break apart after it has been taken past its tensile stress limit. Tensile strength of steel indicates how much tensile stress it can resist before having a ductile or brittle failure.

steel beam rebar

What is Ductile Failure?

 A ductile failure occurs when a malleable object is subjected to extensive plastic deformation or necking. This normally happens before the material fails completely. The failure of highly ductile materials is referred to as ductile rupture. Instead of cracking, materials pull apart in those situations. Significant amount of energy are absorbed and propagated slowly in ductile failure before the fracture occurs. Ductile fracture is also another term for ductile failure.

ductile fracture

 Under a static load, the majority of ductile metals show necking and plastic deformation. These plastic deformations appear before the materials’ final rupture. The shape of the fracture surfaces allows us to observe a significant proportion of the ductile failures. The ductile fracturing of metals under tensile loads can be seen as a cup and cone form. The cup and cone fracture phases can be described as; neck, small cavity forming, formation of cracks and cup and cone fracture.

What is Brittle Failure?

 Brittle fracture is the abrupt, very fast cracking of elements under stress, with little or no signs of ductility or plastic deterioration prior to the fracture. When an element experiences a brittle fracture, there is no thinning or necking, unlike most other tensile failures, where the structure plastically stretches under overload conditions and gets thinner to the point of rupture.

brittle fracture

 Low temperatures are a common cause of brittle fracture. Brittle failure is possible if the steel temperature is at or below its brittle-to-ductile transition temperature. When you combine this with a critical-sized flaw and high tension on the flaw, you’re likely to get a brittle fracture.

 Brittle fractures, like ductile fractures, have a distinct fracturing surface. A brittle failure’s fracture surface is normally fairly smooth. The crack spreads in the material with a process known as cleavage.

Tensile Strength of Steel

 Steel is one of the most popular building materials. It is commonly used in everything from residential construction to skyscrapers, and is praised for its flexibility, incredibly high tensile strength, and value. Steel comes in a variety of types that are used in construction. Each has distinct properties and, as a result, specific applications in construction.

stress-strain curve of steel

 The amount of tensile (stretching) stress that a material can resist before cracking or failing is referred to as its tensile strength. The ultimate tensile strength of a material is determined by dividing the area of the material measured (the cross section) by the stress applied to the material, which is commonly expressed in MPa or Newtons per square milimeter of material. Tensile strength is a valuable indicator of a material’s ability to perform in an application, and it is commonly used to describe the properties of metals and alloys.

1.Yield Strength 

 When being under stress, a material undergoes recoverable deformation. A material’s yield strength indicates the stress beyond which its deformation becomes plastic. Any deformation caused by stress greater than the yield strength is permanent. Because of the linearity of elastic deformation, yield strength is also known as the greatest stress achievable without deviating from the stress-strain proportionality. Large deformations can be found beyond this point with little or no increase in applied load. Yield strength is calculated in Newtons per square milimeters (N/mm2) or Mega pascals.

steel profiles

Yield strength formula:

 σy = Pyp /A0

where Pyp = load at the yield point,

A0 = original cross sectional area

 When a material is under stress less than its yield stress, it will only undergo elastic strain(elastic deformation), with no permanent deformation.

2.Ultimate Tensile Strength

 Ultimate tensile strength, also known as tensile strength or ultimate strength, is the highest force that a material can resist before rupturing or breaking when stretched or pulled. Tensile strength is the opposite of compressive strength, and the two may have very different values.

Ultimate tensile strength formula:

σmax = Pmax /A0           

where A0 = original cross sectional area,

Pmax = maximum load

 This value is usually much higher than the yield stress (as much as 50 to 60 percent more than the yield for some types of metals). Necking occurs as a ductile material exceeds its maximum strength and the cross-sectional area gets smaller locally. There is no stress on the stress-strain curve that is greater than the ultimate strength. Even though deformations will continue to escalate, until the ultimate strength is reached, the stress usually decreases. Since it is an intensive property, its value is independent of the size of the test specimen. However, it is affected by other factors such as specimen preparation, the existence or absence of surface defects, and the temperature of the test area and material.

tensile strength of steel

How to Measure Tensile Strength of Steel?

 Tensile testing, also known as tension testing, is one of the most basic and widely used methods of mechanical testing. Tensile testing involves applying tensile force to a material and measuring the specimen’s resistance to the stress. Tensile measurements determine how strong a material is and how much it can elongate by doing so. Tensile tests are commonly performed on electromechanical or uniform testing instruments, are easy to carry out, and are completely standardized.

tensile strength test

 Tensile testing will reveal a lot about a material. We may obtain a complete profile of the material’s tensile properties by testing it as it is being pulled. As this data is plotted on a graph, it produces a stress/strain curve, which indicates how the material responded to the applied forces. The point of failure is of primary interest, but other important properties to consider include strain, yield strength and modulus of elasticity.

Tensile strength of steel has been explained here. Hope you enjoyed it!





We’d love to keep you updated with our latest news and offers 😎

We don’t spam! Read our privacy policy for more info.

Spread the love

1 thought on “Tensile Strength of Steel”

  1. Pingback: Types of Forces and Stresses in Civil Eng. | techyildiz

Comments are closed.